Cropping Systems

Wheat, rye, triticale, barley, einkorn, emmer, spelt, field peas, sorghum, millet, oats, sunflowers, quinoa, garbs

Inland Northwest Artisan Grains Conference July 12th-13th, 2019

Facilitator

Julianne Kellogg

- WSU PhD Student in Crop Science
- Current research emphasizes understanding crop variety impact on human health.
- Past MS research on participatory quinoa breeding for organic systems.
- Included publishing a WSU Extension bulletin on growing quinoa

Email: julianne.kellogg@wsu.edu

Session Speaker

Jason Bishop

- 5th Generation Farmer
- Edwall Washington
- Aerospace Manufacturing Engineer
- Sharing Observations of: Wheat, Rye, Trit, Barley, Einkorn, Emmer & Spelt, Field Peas, Sorghum, Millet, Oats, Sunflowers

Email: livingheritagefarms@gmail.com

Session Speaker

Rachel Wieme

- Postdoc Researcher at WSU Pullman
- PhD in Soil Science from WSU
- Presenting on alternative cropping systems for Palouse Agriculture: Organic crop rotations with quinoa

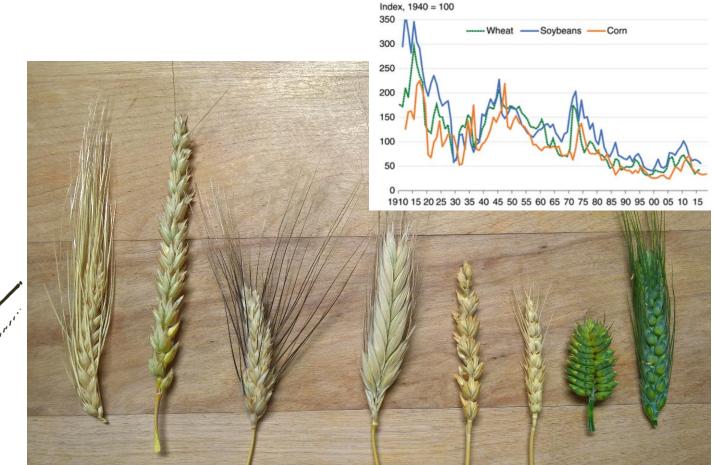
Email: Rachel.wieme@wsu.edu

Session Speaker

Kevin Murphy

- Associate Professor, International Seed and Cropping Systems
- Sustainable Seed Systems Lab
- Breeding seeds and grains for diversity, flavor, and nutrition
- Talking about food barley, spelt, and quinoa cropping systems research

Email: kmurphy2@wsu.edu



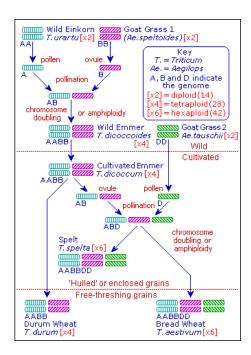
Wheat

• Diversity

Expenses: \$115 Yield: 45 bu/ac Price: \$6 / bu Gross: \$270 / ac Net: \$85 / ac

Inflation-adjusted corn, wheat, and soybean prices, 1912-2018

Barley


• \$150/Ton

Expenses: \$115 Yield: 1 ton / ac Price: \$140 / ton Gross: \$140 / ac Net: \$25 / ac

Emmer & Spelt

• Farro (hulled)

Einkorn

- Small Kernel
- Low Yield
- High Tillers
- Hulled
- Low Gluten Strength
- Low Water Absorption

Rye

Class C Weeds

Class C weeds are non-native weeds found in Lincoln County. Many of these species are widespread in the county. Long-term programs of suppression and control are a local option, depending upon local threats and the feasibility of control in local areas. <u>Underline means</u> <u>surveys for those weeds will occur after a complaint</u> is filed.

Common Name	Scientific Name		
Absinth wormwood	Artemisia absinthium		
Babysbreath	Gypsophila paniculata		
Bull thistle	Cirsium vulgare		
Canada thistle	Cirsium arvense		
Common St. johnswort	Hypericum perforatum		
Common tansy	Tanacetum vulgare		
Cereal rye	Secale cereale		
Field bindweed	Convolvulus arevensis		
Hoary cress	Lepidium appelianum		
Jointed goatgrass	Aegilops cylindrical		
Medusahead	Taeniatherum caput-medsae		
Ventenata	Ventenata dubia		
Yellow flag Iris	Iris pseudocorus		
Yellow toadflax	Linaria vulgaris		

Triticale

- Rye/Cross
- Ergot

Expenses: \$140 Yield: 2 ton / ac Price: \$145 / ton Gross: \$290 / ac Net: \$150 / ac

Peas

Expenses: \$130 Yield: 1.5 ton / ac Price: 12¢ / lb Gross: \$360 / ac Net: \$230 / ac

Millet

- C4 Plant
- Regional Qs
- Shallow Root
- Storage

Expenses: \$145 Yield: 1.25 ton / ac Price: \$11.5 / 100wt Gross: \$287.5 / ac Net: \$142.5 / ac

Grain Sorghum / Milo

Expenses: \$160 Yield: 1 ton / ac Price: \$18 / 100wt Gross: \$360 / ac Net: \$200 / ac

Oats

- Likes
 Water
- Likes Cool
- Plant Early

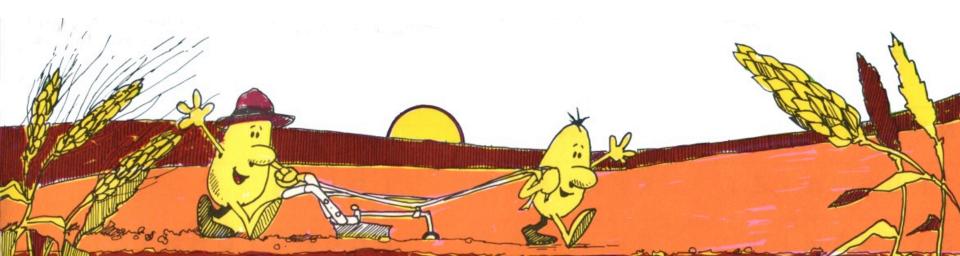
Expenses: \$100 Yield: 1 ton/ac Price: \$225 / ton Gross: \$225 / ac Net: \$100 / ac

Sunflowers

- Birds
- Gawkers

Expenses: \$200 Yield: 1500 lb/ac Price: 19¢ / lb Gross: \$285 / ac Net: \$85 / ac

Others


- Buckwheat
 - Export/Allergies
 - Wireworm
 - Phosphorus
- Flax
 - Indeterminate
 - Prussic Acid
 - Omega 3
 - Sharp Sickles

Seed Sources

- <u>https://www.ancientcerealgrains.org/</u>
- <u>https://rockymountainseeds.org/</u>
- <u>https://www.ars-grin.gov/npgs/</u>

Alternative Cropping Systems Research

Dryland Organic Crop Rotations with Quinoa : Productivity, Economic Performance, and Soil Quality

Dryland Organic Cropping Systems with Quinoa?

- Potential for quinoa in organic systems
 - High market value, break disease cycles, different fertility demands?
- Where would it best fit in rotation?

Tested eight 3-year "grain crop sequences" with and without quinoa

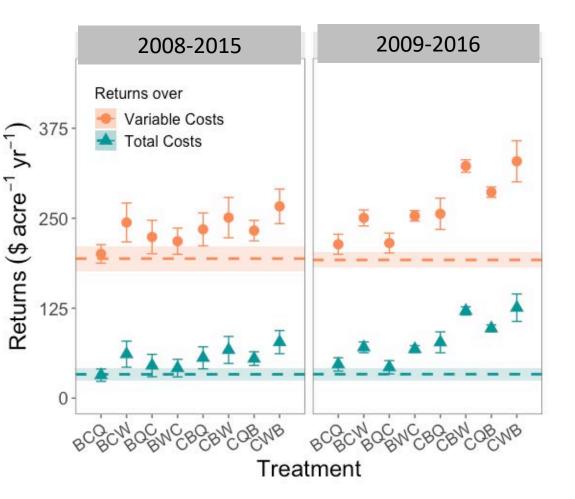
- As part of a longer rotation with alfalfa (5 years)
- Organically managed

Treatments:

- **B**arley **C**hickpea **Q**uinoa (BCQ)
- **B**arley **C**hickpea **W**heat (BCW)
- Barley Quinoa Chickpea (BQC)
- **B**arley **W**heat **C**hickpea (BWC)
- Chickpea Barley Quinoa (CBQ)
- Chickpea Barley Wheat (CBW)
- Chickpea Quinoa Barley (CQB)
- Chickpea Wheat Barley (CWB)

Yield & Economics

- Very different weather years had a large impact on sequence yields
 - Especially quinoa and chickpea (very low yields with hot summers)
 - Quinoa yielded better following barley than following chickpea
 - Chickpea yielded better earlier in the sequence
 - Barley yielded better later in the sequence
- Some agronomic lessons learned:
 - Quinoa heat intolerance, Soil crusting impact on quinoa
 - Chickpeas vs. weeds
 - Alfalfa termination


Crop Budgets

	Barley	Chickpea	Wheat (spring)	Quinoa
Expenses (\$/acre):	200	240	130	128
Yield:	0.7-2.6 ton/acre	2-1370 lbs/acre	23-75 bu	10-470 lbs/acre
Price:	\$400/ton	\$0.50/lb	\$10/bu	\$1.52/lb
Average Gross: (\$/acre)	455	244	390	142
Average Net: (\$/acre)	255	5	260	14

Financial Performance: 8-year cropping system

- Moderate yields of quinoa had similar economic returns as wheat
 - But because of low quinoa yields most years and a drop in price, wheat sequences performed better on average
- Organic cropping systems had higher returns compared to the "typical" conventional with county average yields
- Alfalfa provided economic & agronomic support
 - Weed control, soil quality/fertility

Soil Quality

- Efficient nitrogen cycling through grain sequences
 - Lower available N after cereals, but higher mineralizable N (residues)
 - Overall higher available N in quinoa treatments vs. wheat treatments
 - Lower available N over time
- Quinoa often similar to chickpea, but what if yields improved?

Conclusions

- Organic management on the Palouse requires a revision of the current dominant system
 - Diversification, perennial crops, animals?
- Organic price premiums help ensure economic success despite lower organic yields
- Many challenges and more questions!
 - Locally adapted quinoa varieties
 - Weed control

Quinoa, Food Barley, Millet, Spelt

SUSTAINABLE SEED SYSTEMS LAB

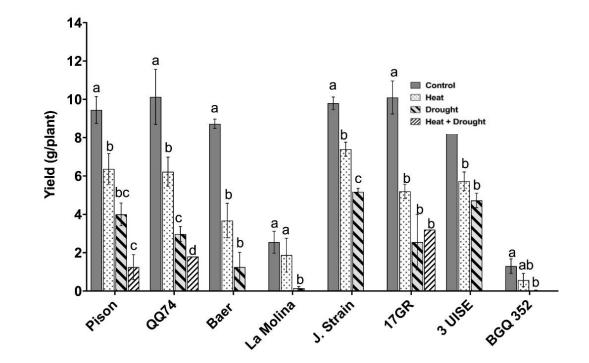
HOME PEOPLE OUR PROJECTS OUR VARIETIES COLLABORATORS CONTACT MOR

Inland Northwest Artisan Grains Conference

July 12, 2019

Kevin Murphy Sustanable Seed Systems Lab Washington State University kmurphy2@wsu.edu Quinoa Research Projects Washington State University 2010-2019

Hannah Walters & Adam Peterson



EFFECT OF HEAT AND DROUGHT STRESS IN QUINOA (*Chenopodium quinoa* Willd.)

Leonardo Hinojosa Ph.D. Candidate. Crop Science WSU October - 2018

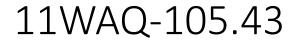
Effect of Heat and Drought Stress on Quinoa Yield in 8 Cultivars

Heat, drought and combination of both reduced seed yield in quinoa

11WAQ-102.14

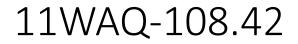
11WAQ-102.52

11WAQ-102.74



11WAQ-104.60

11WAQ-106.85



11WAQ-105.92

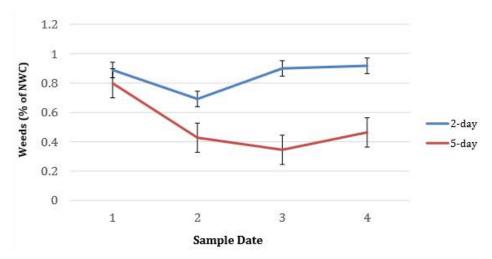
Intercropping Trials

- Variety x Irrigation x Intercrop Trial: Two quinoa varieties intercropped with a <u>clover/medic</u> mix and <u>Fescue/clover</u> mix at 3 irrigation levels
- Key Results: The fescue grass/clover mix created more biomass and winter cover compared to the clover/medic intercrop whereas the clover/medic mixture increased quinoa seed protein.
- Conclusions: Intercrops improved weed control, soil fertility, and protein in the seed and had no negative impacts on yield

Walters et al., 2016 Agroecology and Sustainable Food Systems

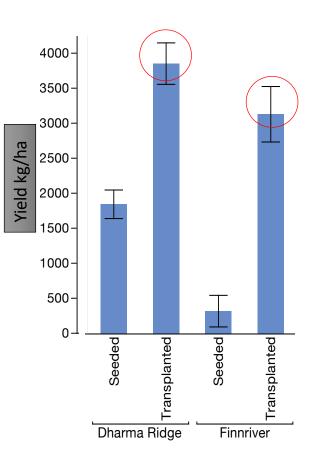
Livestock Integration

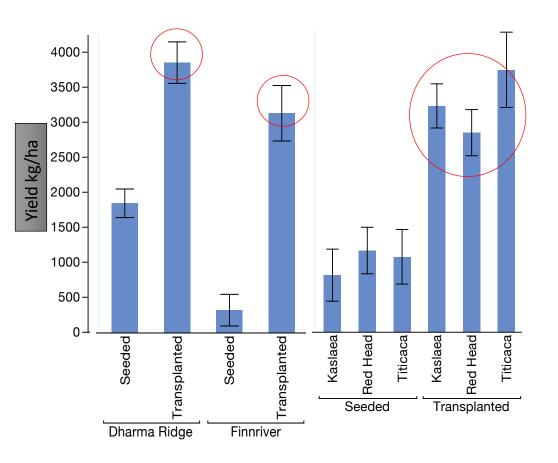
- Using Geese for weed control
- 3 varieties x 3 goose density treatments



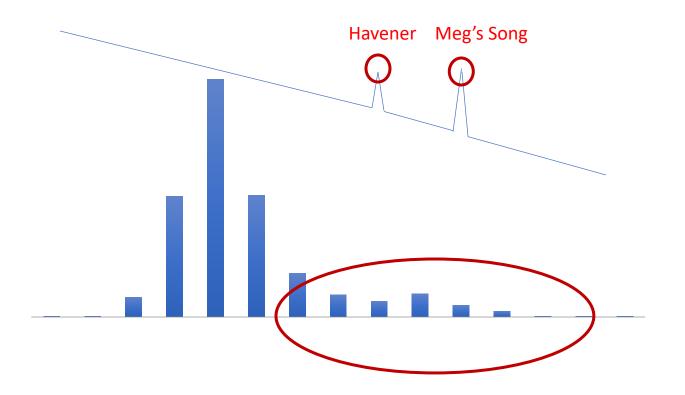
Kristofor Ludvigson


Livestock Integration


• Utilizing geese 5 days per week eliminated approximately 60% of the weeds while improving soil fertility



Direct Seeding vs. Transplanting



Food Barley: Meg's Song and Havener

Hulless Barley Food Quality Testing

Bread Quality

Buck Havener Meg's Song

Loaf Volume (mL) **931.9** 971.4 957.6

Food Barley Research: GxE for β-glucan

- How does environment play a role in β-glucan content?
- Can we identify stable varieties across contrasting environments?

8 locations, 2 years (2017-2018), 18 entries

Halle Choi, MS student

Univariate Measures of Stability

		Deviation from	Shukla's Stability	Wricke's	Kang's Yield
Genotype	Mean (%w/w)	the Regression	Variance (σ _i ²)	Ecovalence (W _i ²)	Stability
107.43	3.359	0.239***	0.201 *	1.543	-10
Genie	3.452	0.373***	0.318 **	1.737	-9
Odyssey	3.496	0.354***	0.347 **	1.891	-8
107.58	3.524	0.213*	0.203 *	1.122	-3
Oreana	3.616	0.268***	0.316 **	1.722	-6
Champion	3 654	በ 197**	በ 122	0 694	4
Copeland	3.673	0.123**	0.072	0.573	5
120.23	3.768	0.099	0.040	0.348	6 +
120.14	3.771	0.159	0.066	0.487	7 +
Claymore	3.797	0.209	0.051	0.475	9 +
Muir	3.889	0.121	0.056	0.350	10 +
Survivor	3.934	0.181*	0.122	0.723	13 +
Altorado	3.947	0.143*	0.093	0.596	14 +
Vespa	3.974	0.124*	0.042	0.279	15 +
Lenetah	4.084	0.061	0.034	0.230	17 +
Lyon	4.202	0.310***	0.142	0.820	<u>10 i</u>
Havonor	6.206	0.402***	0.120	1.082	16 +

Level of significance is indicated as 0.05, 0.01, 0.001, or not significant by the following *, **, ***, or no star, respectively

Effect of Nitrogen and Seeding Rate on β-glucan Content and Yield in Barley GxExM (Management)

- No-till Systems
- 3 years (2016-2018), 2 locations (Genesse, ID and Almota, WA)
- 5 nitrogen rates
- 3 seeding rates
- 2 varieties

Cedric Habiyaremye, PhD student

N (kg/ha)	B-glucan (%)		Protein (%)	
N (kg/ha)	Almota	Genesee	Almota	Genesee
2016				
0	6.8	7.3	10.7	9.2
62	6.6	7.2	10.9	9.2
95	6.7	7.4	11.7	10.4
129	6.7	7.3	12.1	10.8
162	6.8	7.7	12.6	12.2
Mean	6.7	7.4	11.6	10.4
LSD (p < 0.05)	0.38		0.89	

SPRING BARLEY

MEG'S SONG

SPRING BARLEY

SPRING BARLEY

LYON SPRING BARLEY

Millets

- Warm season crops, Poaceae family
- Five most important millet species commonly grown as commercial crops:
 - proso (Panicum miliaceum L.)
 - foxtail (Setaria italica L.)
 - pearl (Pennisetum glaucum L.R. Br.)
 - Japanese barnyard (Echinochloa esculenta)
 - browntop millet (Urochloa ramosa)

Foxtail millet WSU, 2015

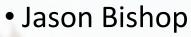
Proso millet WSU, 2015

		Plant Height	
Variety	Days to Maturity	(cm)	Yield (kg/ha)
Huntsman	107.6	73.79	1218.21
Sunup	104.4	74.4	1487.09
Sunrise	104.4	74.2	1900.23
Horizon	103.4	73.4	1652.84
<mark>Prosos</mark>	99	71.2	2015.81
<mark>USSR 63</mark>	<mark>89</mark>	57.6	2052.45

Top yielding proso millet varieties Organic

Varieties	Yield (kg/ha)
GR 665	1,230
Earlybird	1,081
Sunup	1,044
Sunrise	1,007
GR 664	926

Elwha River Spelt



Audience, ask your questions!

More questions? Contact a speaker:

- livingheritagefarm@gmail.com
- Rachel Wieme
 - rachel.wieme@wsu.edu
- Kevin Murphy
 - kmurphy2@wsu.edu
- Facilitator, Juianne Kellogg
 - julianne.kellogg@wsu.edu

